PROBLEM **SOLVING IN ACTION GRADE 3**

Presenter Dr. Bonita Manning-White CKingEducation

()

Learning Intention:

• Fostering higher expectations for all learners to accelerate student achievement

I can statements:

- I can participate in problem solving protocols.
- I can share strategies for teaching problem solving.

TURN AND TALK Let's Talk

What strategies and/or resources are you currently using to teach problem solving in your classroom?

- • •
- • •
- • •

•	Key Words:						
• Key	Key words are NOT a viable strategy for solving						
wor	word problems. Instead, we want students to make						
sens	sense of problems and make use of their						
• und	understanding to solve the problems. Moreover,						
rese	research tells us that the use of key words as a						
📍 strat	strategy for solving problems adds to our students'						
• inab	 inability to solve problems. 						
•	6 6 9 2 3						
•							
	CKingEducation						

MATHEMATICAL PROCESS STANDARD #1

Make sense of problems and persevere in solving them.

a. Relate a problem to prior knowledge.
b. Recognize there may be multiple entry points to a problem and more than one path to a solution.
c. Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.
d. Evaluate the success of an approach to solve a problem and refine it if necessary.

WHAT DOES IT LOOK LIKE WHEN STUDENTS MAKE Sense of Problems?

CKingEducation

https://www.youtube.com/watch?v=kibaFBgaPx4

MATH SCCCR STANDARDS PROGRESSION

3.ATO.3 Solve real-world problems involving equal groups, area/array, and number line models using basic multiplication and related division facts. Represent the problem situation using an equation with a symbol for the unknown

3.ATO.8 Solve two-step real-world problems using addition, subtraction, multiplication and division of whole numbers and having whole number answers. Represent these problems using equations with a letter for the unknown quantity.

3.MDA.6 Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

Types of Problems (+, -)

Common Addition and Subtraction Problem Types

	Result Unknown	Change Unknown	Start Unknown			
Add to/ Joining	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? 2 + 3 = ?	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? 2 + ? = 5	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? ? + 3 = 5			
Joining action-involves three quantities; an initial amount, a change amount (the part being added or joined), and the resulting amount (the amount after the action is over).						
Take From/ Separating	Five apples were on the table. I ate two apples. How many apples are on the table now? 5 - 2 = ?	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? 5 - ? = 3	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? ? $-2 = 3$			
Separation action involves three quantities; the initial amount as the whole or the largest amount, a change, and result amounts.						
	Total Unknown	Addend Unknown	Both Addends Unknown			
Part-Part- Whole	Three red apples and two green apples are on the table. How many apples are on the table? 3 + 2 = ?	Five apples are on the table. Three are red and the rest are green. How many apples are green? 3 + ? = 5, 5 - 3 = ?	Grandma has five flowers. How many can she put in her red vase and how many in her blue vase? 5 = 0 + 5, 5 = 5 + 0 5 = 1 + 4, 5 = 4 + 1 5 = 2 + 3, 5 = 3 + 2			
Part-Part-Whole action-involves two parts that are combined into one whole. There is no meaningful distinction between the two parts within a part-part-whole situation, so there is no need to have a different problem for each part as the unknown.						
	Difference Unknown	Bigger Unknown	Smaller Unknown			
Compare	("How many more?" version): Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy?	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have?	(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have? (Version with "fewer"):			
	("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie? 2 + ? = 5, 5 - 2 = ?	(Version with "fewer"): Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have? 2 + 3 = ?, 3 + 2 = ? ird amount is the difference between the two amo	Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? 5 – 3 = ?, ? + 3 = 5			

Types of Problems (x, ÷)

Common Multiplication and Division Problem Types

	Unknown Product	Group Size Unknown	Number of Groups Unknown
	3 x 6 = ?		
	3 X 0 = f	"How many in group?" Division 3 x ? = 18, and 18 ÷ 3 = ?	"How many groups?" Division ? x 6 = 18, and 18 ÷ 6 = ?
	where one is been with a shore in each last		
	There are 3 bags with 6 plums in each bag.	If 18 plums are shared equally into 3 bags, then	If 18 plums are to be packed 6 to a bag, then
	How many plums are there in all?	how many plums will be in each bag?	how many bags are needed?
Equal Groups	Measurement example: You need 3 lengths	Measurement example: You have 18 inches of	Measurement example: You have 18 inches
Equal Groups	of string, each 6 inches long. How much	string, which you will cut into 3 equal pieces.	of string, which you will cut into pieces that
	string will you need altogether?	How long will each piece of string be?	are 6 inches long. How many pieces of string
			will you have?
	There are 3 rows of apples with 6 apples in	If 18 apples are arranged into 3 equal rows,	If 18 apples are arranged into equal rows of 6
	each row. How many apples are there?	how many apples will be in each row?	apples, how many rows will there be?
	cacinon. non many apples are mere.	non many appres nin be in caer row.	appres, non many rons in there be.
	Area example: What is the area of a 3 cm by	Area example: A rectangle has area 18 square	Area example: A rectangle has area 18 square
Arrays, Area	6 cm rectangle?	centimeters. If one side is 3 cm long, how long	centimeters. If one side is 6 cm long, how long
		is a side next to it?	is a side next to it?
	A blue hat costs \$6. A red hat costs 3 times	A red hat costs \$18 and that is 3 times as much	A red hat costs \$18 and a blue hat costs \$6.
	as much as the blue hat. How much does the	as a blue hat costs. How much does a blue hat	How many times as much does the red hat
	red hat cost?	cost?	cost as the blue hat?
Compare	Measurement example: A rubber band is 6	Measurement example: A rubber band is	Measurement example: A rubber band was 6
	cm long. How long will the rubber band be	stretched to be 18 cm long and that is 3 times	cm long at first. Now it is stretched to be 18
	when it is stretched to be 3 times as long?	as long as it was at first. How long was the	cm long. How many times as long is the
	-	rubber band at first?	rubber band now as it was at first?
General	a x b = ?	a x ? = p, and p ÷ a = ?	? x b = p, and p ÷ b = ?

The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.

The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns. Both forms are valuable. Harder Array
The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there?

 Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.

MANY STUDENTS THINK WORD PROBLEMS ARE HARD!

• • • •

WHY ARE WORD PROBLEMS SO HARD?

Issue #1: Reading Levels (Student's Level)

"...mathematics text contain more concepts per sentence and paragraph than any other type of text. They are written in a very compact style; each sentence contains a lot of information, with little redundancy."
• Barton & Heideman, 2002

WHY ARE WORD PROBLEMS SO HARD?

Issue #2: Answer-Getting Mind Sets

Phil Daro says...

Why give students problems to solve? 1. To learn mathematics!

- 2. Answers are part of the process, they are not the product.
 - The product is the student's mathematical knowledge and know-how.
 - The "correctness" of the answers is only part of the process.

WHY ARE WORD PROBLEMS SO HARD?

Issue #3: Over simplification of the problem solving process

The teacher's role as facilitator is crucial in the delivery of an effective problem-solving experience.

DISTRICT PROBLEM SOLVING PROTOCOLS

So what can we do?

- I. Assess where students 'break-down' when problem solving
- 2. Select a manageable and achievable goal(s) or focus area(s)
- 3. Implement research-based strategies to address and target areas of challenge
- 4. Assess and celebrate progress

1st Read: Read for key ideas. (understanding) Students read or listen to the problem to understand the math.

• • • •

- 2nd Read: Read to understand the math.
- Students read to make sense of what is happening. What are some of the numbers represented in the problem? What do the numbers mean?

- 3rd Read: Read to make a plan.
- Students read to make a plan on solving the problem. What is the question? How can I solve this problem? Are there manipulatives that I can use?

A teacher ordered 4 large pizzas for a class party. Each pizza had 8 slices. At the end of the party 5 slices were left. How many pizza slices were eaten?

THINK-PAIR-SHARE

» What are some benefits of a 3 Read Protocol in a math classroom?

I2 STRATEGIES FOR UNDERSTANDING WORD PROBLEMS By Christine King

Word Problem Puzzle A Line at a Time What is the Question

WORD PROBLEM PUZZLE

#1 Word Problem Puzzle

Task:

0

- I. A word problem is cut apart as separate sentences into strips of paper.
- 2. Students have to put the strips in the correct order.
- 3. Students then solve the problem.

WORD PROBLEM PUZZLE IN ACTION

How many oranges did he have altogether?

Mr. Murray had 9 boxes.

He had 4 oranges left after packing.

He packed 8 oranges in each box.

THINK-PAIR-SHARE

> What are some benefits of using Word Problem Puzzle Protocol?

 Word problems are revealed one sentence at a time. As each line is revealed have students discuss and visualize the information and how that information connects to what they already know.

A LINE AT A TIME Jose is a waiter at Outback.

Tonight, he served 8 tables.

Visualize

CKingEducation

A fast heat" means patch mater, postly means recept a tell inner stated obtaining out and of an paters. by Christine King

There were 4 men and 5 women at each table.

Visualize

How many customers did he have?

Visualize

Jose is a waiter at Outback. Tonight, he served 8 tables. There were 4 men and 5 women at each table. How many customers did he have?

There were 7 rows of pumpkins in the pumpkin patch.

Each row had 4 pumpkins.

How many pumpkins were in the pumpkin patch?

A LINE AT A TIME IN ACTION There were 7 rows of pumpkins in the pumpkin patch.

Each row had 4 pumpkins. How many pumpkins were in the pumpkin patch?

THINK-PAIR-SHARE

> What are some benefits of A Line At A Time Protocol?

WHAT IS THE QUESTION?

 Take a word problem and remove the question. Students have to come up with questions that could be answered based upon the context or situation.

WHAT IS THE QUESTION

Because Carmen is on a diet, she uses a calorie counter book to find the number of calories for the foods she eats each day. The local sandwich shop has 4 sandwiches that she likes.

Martin's Sandwich Shop		
Sandwiches	Calorie Count	
Fish Sandwich	589	
Chicken Ranch Melt	920	
Grilled Chicken Sandwich	490	
Mushroom Swiss Burger	900	

 Qual Anal²⁶ means path in technic precing press of comparise indicensive student underscooling and samest with user (pressers).

by Christine Hing

• • • • •

WHAT IS THE QUESTION -

Mrs. Martin wanted her students to practice comparing numbers so they would be prepared for their math test on Friday. She asked Jonathan to draw 3 numbers out of a paper bag. He drew the numbers below.

12 Strategies for Understanding Word Problems

 Qual Anal¹⁴ means path in materi, precing presid comparts in high investe states? interesting and cannot self-self-pressers.

by Christine Hing

THINK-PAIR-SHARE

What are some benefits of using What is the Question Protocol?

GRAPHIC ORGANIZERS & PROBLEM SOLVING

READ	ILLUSTRATE
Read the problem carefully	Draw a picture, diagram or use a manipulative.
SOLVE	EXPLAIN
Use your math strategies.	Justify your answer.

Two Step Graphic Organizer Anna bought 3 packs of stickers. Each pack had 5 stickers. Then Anna's friend gave her 10 more stickers. How many stickers does Anna have now?

Name

Two Step Template

My First Step

Show It	Equation		

My Second Step

_		Show It	Equation		
-					
_					

THINK-PAIR-SHARE

- How can graphic organizers help students' problem solve?
- Are there other graphic organizers that your school is currently using to help with problem solving?

WHEN CHILDREN PRACTICE EFFECTIVE PROBLEM-SOLVING STRATEGIES, THEY REAP MANY BENEFITS:

- apply, understand and practice skills in context;
- collaborate with others to develop new strategies;
- formulate and test their own explanations;
- communicate their explanations and listen to others' explanations;
- use flexible representations to help them solve problems.

HOW DO WE FIND ADDITIONAL PROBLEM-SOLVING TASKS FOR STUDENTS? All K-5 Math units include at least 1 problem solving task.

TAKE A MOMENT TO THINK ABOUT YOUR EXPERIENCE TODAY. CHOOSE ONE DISCUSSION STARTER TO SHARE YOUR THOUGHTS.

Discussion starters

I think...

It reminds me of...

I predict...

I noticed...

l like...

Contact Information

Dr. Bonita Manning-White (bonitamanningwhite@gmail.com)

Please complete the Survey

• • •

