PROBLEM SOLVING IN ACTION CRADE 3

OVERVIEW

Learning Intention:

- Fostering higher expectations for all learners to accelerate student achievement

I can statements:

- I can participate in problem solving protocols.
- I can share strategies for teaching problem solving.

TURN AND TALK
 Let's

 Talk What strategies and/or resources are you currently using to teach problem solving in your classroom?
:The primary goal of problem solving is making sense of mathematics!

Key Words:

Key words are NOT a viable strategy for solving word problems. Instead, we want students to make sense of problems and make use of their understanding to solve the problems. Moreover, research tells us that the use of key words as a strategy for solving problems adds to our students' inability to solve problems.

MATHEMATICAL PROCESS STANDARD \#]

Make sense of problems and
a. Relate a problem to prior knowledge.
b. Recognize there may be multiple entry points to a problem and more than one path to a solution.
c. Analyze what is given, what is not given, what is being asked, and what strategies are needed, and make an initial attempt to solve a problem.
d. Evaluate the success of an approach to solve a problem and refine it if necessary.

https://www.youtube.com/watch?v=kibaFBgaPx4

3.ATO. 3 Solve real-world problems involving equal groups, area/array, and number line models using basic multiplication and related division facts. Represent the problem situation using an equation with a symbol for the unknown
3.ATO. 8 Solve two-step real-world problems using addition, subtraction, multiplication and division of whole numbers and having whole number answers. Represent these problems using equations with a letter for the unknown quantity.
3.MDA. 6 Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

Types of Problems (+, -)

Common Addition and Subtraction Problem Types

	Result Unknown	Change Unknown	Start Unknown
Add to/ Joining	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? $2+3=?$	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? $2+?=5$	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? $?+3=5$
Joining action-involves three quantities; an initial amount, a change amount (the part being added or joined), and the resulting amount (the amount after the action is over).			
Take From/ Separating	Five apples were on the table. I ate two apples. How many apples are on the table now? $5-2=?$	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? $5-?=3$	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? $?-2=3$
Separation action involves three quantities; the initial amount as the whole or the largest amount, a change, and result amounts.			
	Total Unknown	Addend Unknown	Both Addends Unknown
Part-Part- Whole	Three red apples and two green apples are on the table. How many apples are on the table? $3+2=$?	Five apples are on the table. Three are red and the rest are green. How many apples are green? $3+?=5,5-3=?$	Grandma has five flowers. How many can she put in her red vase and how many in her blue vase? $\begin{aligned} & 5=0+5,5=5+0 \\ & 5=1+4,5=4+1 \\ & 5=2+3,5=3+2 \end{aligned}$
Part-Part-whole action-involves two parts that are combined into one whole. There is no meaningful distinction between the two parts within a part-part-whole situation, so there is no need to have a different problem for each part as the unknown.			
	Difference Unknown	Bigser Unknown	Smaller Unknown
Compare	("How many more?" version): Lucy has two apples. Julie has five apples. How many more apples does Julie have than Lucy? ("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie? $2+?=5,5-2=?$	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have? (Version with "fewer"): Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have? $2+3=?, 3+2=?$	(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How marny apples does Lucy have? (Version with "fewer"): Lucy has 3 fewer apples than Julie. Julie has five apples. How marny apples does Lucy have? $5-3=?, ?+3=5$

Types of Problems ($\mathbf{x}, \dot{-}$)

Common Multiplication and Division Problem Types

	Unknown Product $3 \times 6=?$	Group Size Unknown "How many in group?" Division $3 \times ?=18$, and $18 \div 3=$?	Number of Groups Unknown "How many groups?" Division $? \times 6=18$, and $18 \div 6=$?
Equal Groups	There are 3 bags with 6 plums in each bag. How many plums are there in all? Measurement example: You need 3 lengths of string, each 6 inches long. How much string will you need altogether?	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag? Measurement example: You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?	If 18 plums are to be packed 6 to a bag, then how many bags are needed? Measurement example: You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?
Arrays, Area	There are 3 rows of apples with 6 apples in each row. How many apples are there? Area example: What is the area of a 3 cm by 6 cm rectangle?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row? Area example: A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be? Area example: A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?
Compare	A blue hat costs 56 . A red hat costs 3 times as much as the blue hat. How much does the red hat cost? Measurement example: A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	A red hat costs $\$ 18$ and that is 3 times as much as a blue hat costs. How much does a blue hat cost? Measurement example: A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?	A red hat costs $\$ 18$ and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue hat? Measurement example: A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
General	$\mathrm{a} \times \mathrm{b}=$?	$a \times ?=p$, and $p \div a=$?	? $\times \mathrm{b}=\mathrm{p}$, and $\mathrm{p} \div \mathrm{b}=$?

- The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples.
 The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there?
 situations.

MANY STUDENTS THINK WORD PROBLEMS ARE HARD!

WHY ARE WORD PROBLEMS SO HARD?

Issue \#1: Reading Levels (Student's Level)
"...mathematics text contain more concepts per sentence and paragraph than any other type of text. They are written in a very compact style;
rmation, with little redundancy."

- Barton \& Heideman, 2002

WHY ARE WORD PROBLEMS SO HARD?

Issue \#2: Answer-Getting Mind Sets

Phil Daro says...

Why give students problems to solve?

1. To learn mathematics!
2. Answers are part of the process, they are not the product.

- The product is the student's mathematical knowledge and know-how.
- The "correctness" of the answers is only part of the process.

WHY ARE WORD PROBLEMS SO HARD?

Issue \#3: Over simplification of the problem solving process

KEY MESSAGES

The teacher's role as facilitator is crucial in the delivery of an effective problem-solving experience.

DISTRICT PROBLEM SOLVING PROTOCOLS

So what can we do?

I. Assess where students 'break-down' when problem solving
2. Select a manageable and achievable goal(s) or focus area(s)

Implement research-based strategies to address and target areas of challenge
4. Assess and celebrate progress

STRATEGY \# 马READ PROTOCOL

- 1st Read: Read for key ideas. (understanding)
- Students read or listen to the problem to understand the math.

3 fead Pbotocol

- 2nd Read: Read to understand the math.
- Students read to make sense of what is happening. What are some of the numbers represented in the problem? What do the numbers mean?

Зhead protocol

- 3rd Read: Read to make a plan.
- Students read to make a plan on solving the problem. What is the question? How can I solve this problem? Are there manipulatives that I can use?

3 read protocol inaction

A teacher ordered 4 large pizzas for a class party. Each pizza had 8 slices. At the end of the party 5 slices were left. How many pizza slices were eaten?

THINK-PAIR-SHARE

> What are some benefits of a 3 Read Protocol in a math classroom?

Let's

Talk

[2 STRATEGIES FOR UNDERSTANDING WORD PROBLEMS

By Christine King

12 strategies for Understanding Word Problems

Word Problem
Puzzle
A Line at a
Time What is the Question

WORD PROBLEM PUZZLE

\#1 Word Problem Puzzle

by Christine kiag

Task:

I. I. A word problem is cut apart as separate sentences into strips of paper.
2. Students have to put the strips in the correct order.
3. Students then solve the problem.

Put this word problem in order.

Tina has 6 fewer pieces of candy than Tony.
Tina also has some Skittles.

How many pieces of candy does Tina have?

$$
\text { Tony has } 18 \text { Skittles. }
$$

WORD PROBLEM PUZZLEIN ACTION

How many oranges did he have altogether?

Mr. Murray had 9 boxes.
He had 4 oranges left after packing.
He packed 8 oranges in each box.

THINK-PAIR-SHARE

> What are some benefits of using Word Problem Puzzle Protocol?

Let's

Talk

A LINE AT A TIME

- Word problems are revealed one sentence at a time. As each line is revealed have students discuss and visualize the information and how that information connects to what they already know.

a LINE AT A TIME Jose is a waiter at Outback.

Visualize

12 strategies for Understanding Word Problems
() 5NN

amintumaturn
by Christion Ming

A LINE AT A TIME

Tonight, he served 8 tables.

Visualize

12 strategies for Understanding Word Problems
(M)

sactictervicuror
ambrumetive
by Christise kiag

A LINE AT A TIME

There were 4 men and 5 women at

 each table.In Strategies for
Understanding
Word Problems

Visualize
anverevanior
by Christise kisg

A LINE AT A TIME

How many customers did he have?

ymiverumenim
by Christion kisg

Visualize

A LINE AT A TIME

Jose is a waiter at Outback. Tonight, he served 8 tables. There were 4 men and 5 women at each table. How many customers did he have?

It strategies for
understanding Hinderstanding Word Problems
(r)
by Chrisetion Ming

Visualize

A LINE AT A TIME

There were 7 rows of pumpkins in the pumpkin patch.

12 Stratestes for tnderstanding Word Problems
(5) 5NW
iswincorvacuror
by Christime kisg

A LINE AT A TIME

Each row had 4 pumpkins.

Visualize

A LINE AT A TIME

How many pumpkins were in the pumpkin patch?

12 strategies for Understanding Word Problems
pom
mbsu

by Christime Ming
Visualize

A LINE AT A TIME INACTION

There were 7 rows of pumpkins in the pumpkin patch.
Each row had 4 pumpkins. How many pumpkins were in the pumpkin patch?

Visualize

THINK-PAIR-SHARE

- What are some benefits of A Line At A Time Protocol?

Let's
 Talk

WHAT IS THE QUESTION?

by Christioe Mine

- Take a word problem and remove the question. Students have to come up with questions that could be answered based upon the context or situation.

WHAT IS THE QUESTION

Because Carmen is on a diet, she uses a calorie counter book to find the number of calories for the foods she eats each day. The local sandwich shop has 4 sandwiches that she likes.

Martin's Sandwich Shop	
Sandwiches	Calorie Count
Fish Sandwich	589
Chicken Ranch Melt	920
Grilled Chicken Sandwich	490
Mushroom Swiss Burger	900

WHAT IS THE QUESTION

Mrs. Martin wanted her students to practice comparing numbers so they would be prepared for their math test on Friday. She asked Jonathan to draw 3 numbers out of a paper bag. He drew the numbers below.

THINK-PAIR-SHARE

> What are some benefits of using What is the Question Protocol?
Let's

GRAPHIC ORGANIZERS \& PROBLEM SOLVING

RISE

Anna bought 3 packs of stickers. Each pack had 5 stickers. Then Anna's friend gave her 10 more stickers. How many stickers does Anna have now?

Name \qquad
Two Step Template
My First Step
Show It
Equation

My Second Step
Show It
Equation

THINK-PAIR-SHARE

> How can graphic organizers help students' problem solve?
> Are there other graphic organizers that your school is currently using to help with problem solving?

Let's

Talk

- apply, understand and practice skills in context;
- collaborate with others to develop new strategies;
- formulate and test their own explanations;
- communicate their explanations and Listen to others' explanations;
- use flexible representations to help them solve problems.

HOW DO WE FIND ADDITIONAL PROBLEMSOLVING TASKS FOR STUDENTS?

All K-5 Math units include at least 1 problem solving task.

Let's
 Talk

Discussion starters

TAKE A MOMENT TO THINK ABOUT YOUR EXPERIENCE TODAY. CHOOSE ONE DISCUSSION STARTER TO SHARE YOUR THOUCHTS.

think...

It reminds me of...

predict...
| noticed...
I like...

Dr. Bonita Manning-White (bonitamanningwhite@gmail.com)

